diffusion rec

diffusion rec

September 10, 2024

C X

Camille X

Robotic Imitation Learning Methods

1 / 6

Series

data

command and state

kuavo_traj_q_v_tua

kuavo_traj_q_v_tua

policy

module

robot env

Chat with HW

experience

事务

Idea

  1. 图像的归一化能否和state一样在图像之间归一化,而不是自己归一化?
  • what matters in robot imitation learning ?

  • diffuision scheduler and predict_net is 解耦

  • directly use data or use latent of data

  • some acknowledges about nn.parameters()

  • a model archtecture picture about diffusion policy

  • details about imitation learning data flow in training

  • naive bayes 在对两个高斯分布时,naive bayes 是logistic回归的特殊情况

  • 什么是自归回

  • nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding), nn.Conv2d, nn.Linear(),

  • Conditional Denoise:

P(xt1xt)=ϵfθ(xt,t,condition),condition{text,CLIP,classifier,image}P(x_{t-1}|x_t) = ||epsilon - f_{ heta}(x_t, t, ext{condition})||, ext{condition} in { ext{text}, ext{CLIP}, ext{classifier}, ext{image}}
  • VAE IL, DIFFUSION IL, BC_RNN IL , (octo IL)?

关于部署端延迟以及模型预测时间的覆盖

条件:

  1. 机器人数据的处理后频率为: 10Hz
  2. 模型预测时间约为: 0.13s

设计

  1. 机器人轨迹设计为:1-100step, 时间为10s(10Hz)

延迟模拟

Camille-X | © 2025

Made with

svelte-logo